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The evolution of two-dimensional regular flows laden with solid heavy particles is 
studied analytically and numerically. The particulate phase is assumed to be dilute 
enough to neglect the effects of particle-particle interactions. Flows with large 
Reynolds and Froude numbers are considered, when effects related to viscous 
dissipation and gravity are negligible. A Cauchy problem is solved for an initially 
uniform distribution of particles with Stokes (S t )  and Reynolds (Re,) numbers of order 
unity in several types of flows representing steady solutions of the two-dimensional 
Euler equations. We consider flows in the vicinity of the hyperbolic stagnation point 
(with a uniform strain and zero vorticity) and the elliptic stagnation point (where 
vorticity is uniform), a circular vortex (with vorticity depending on the radius) and 
Stuart vortex flow. Analytical solutions are obtained, for the case of sufficiently small 
St, describing the accumulation of particles and corresponding modification of the 
fluid flow. Solutions derived show that the concentration of particles, although 
remaining uniform, decreases at the elliptic stagnation point and grows at the 
hyperbolic point. Owing to the coupling between the particulate and fluid dynamics, 
the flow vorticity is reduced at the elliptic point, while flow strain rate is enhanced at 
the hyperbolic point. Solutions obtained for the circular vortex show that the 
accumulation of particles proceeds in the form of a travelling wave. The concentration 
grows locally, forming the crest of the wave which propagates away from the vortex 
centre. Owing to the influence of the particulate on the carrier flow, the vorticity is 
reduced in the vortex centre. At the location of the crest the gradient of the flow grows 
owing to the drag forces between the fluid and particles and a vorticity peak is 
generated. Analytical solutions are also obtained for a chain of particle-laden Stuart 
vortices. Owing to the coupling effects, the concentration is diminished and the 
vorticity is reduced at the centres of the vortices. A sheet of increased concentration 
and vorticity is formed extending from the braid region to the periphery of the vortices, 
and the flow strain in the braid region is enhanced. Results of numerical simulations 
performed for St = 0.5 show good agreement with analytical solutions. 

1. Introduction 
Problems connected with the prediction of the evolution of fluid flows laden with 

solid heavy particles arise in many areas of applied and fundamental research. The 
dynamics of such flows is governed by a set of coupled equations describing motion of 
the carrier flow and the particulate phase (So0 1967; Elghobashi & Abou-Arab 1983; 
Nigmatulin 1987; Shraiber et af. 1988). The interaction between the fluid and particles 
is due to the friction (or drag) forces which stem from the local slip velocity as particles 
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deviate from the fluid trajectories owing to the inertia. If the concentration of particles 
is large enough, particleparticle interactions and the exclusion of one phase by 
another also affect the flow dynamics. In the dilute limit the latter effects are usually 
negligible compared to those caused by the drag forces, unless the particles are small 
enough to be regarded as nearly passive tracers. 

The local accumulation of heavy particles is revealed to be a common feature of the 
dynamics of particle-laden flows. Numerous results reported for the case when 
the influence of particles on the fluid flow is neglected show that local values of the 
particulate concentration may increase considerably. Under the influence of inertia 
particles drift from the regions of high flow vorticity towards the regions of high strain 
rate and low vorticity. This inertial bias (Maxey 1990; Wang & Maxey 1993) brings 
about the formation of certain patterns in the particle distribution. 

Numerical studies of particle dispersion in turbulent flows show that particles 
accumulate at the edges of local vortex structures forming elongated sheets (Chung & 
Troutt 1988; Squires & Eaton 1991; Longmire & Eaton 1992; Lazaro & Lasheras 
1992a,b; Tang et al. 1992; Wang & Maxey 1993; Martin & Meiburg 1994). The 
accumulation processes and pattern formation are found to be most efficient when the 
particle Stokes number, defined as the ratio of a characteristic time of particle motion 
and a flow timescale, is close to a critical value which varies depending on the flow 
structure and typically is of order unity. Numerical results obtained by Squires & 
Eaton (1991) for the particle concentration dynamics in forced homogeneous 
turbulence show that, owing to the inertial bias, the concentration drops in eddy zones 
(corresponding to vortex centres where curvature of the flow streamlines is large, the 
vorticity is high and the flow strain is weak) and increases considerably in convergence 
zones (i.e. in the vicinity of the hyperbolic stagnation points, where the flow strain rate 
is substantial and vorticity is low). Thus, locally, the influence of the particulate on the 
fluid flow may become significant and the coupling effects should be taken into account 
even for initially small particulate mass loading. 

Numerical studies of particle dispersion in decaying isotropic turbulence performed 
recently by Elghobashi & Truesdell (1993) show that the two-way interaction between 
the two phases results in a higher dissipation rate of the fluid motions due to the 
increased energy of turbulence at high wavenumbers. Experimental results obtained 
recently by Schreck & Kleis (1993) for the particle dispersion in a grid-generated 
turbulence also indicate that, owing to the influence of the particles on the carrier flow, 
the energy cascade towards higher wavenumber components of the turbulence 
spectrum is enhanced and the corresponding dissipation rate is increased. 

The particle dispersion processes are found to be closely related to the dynamics of 
organized vortex structures, which are known to be a ubiquitous feature of turbulent 
flows (see e.g. Crow, Gore & Troutt 1985; Wang & Maxey 1993). Thus, knowledge of 
the evolution of particle-laden regular flows is of importance for understanding the 
mechanism of coupling between the dynamics of particles and turbulence modification. 

The problem of pattern formation in a particle-laden circular vortex with the 
coupling effects taken into account has been addressed recently for the case of small 
particle Reynolds (Re,) and Stokes ( S t )  numbers (Druzhinin 1994). Analytical 
solutions obtained show that the accumulation of particles proceeds in the form of a 
travelling concentration wave. A steep peak in the concentration develops, forming the 
crest of the wave which propagates away from the vortex centre. The corresponding 
modification of the carrier flow for this case St + 1 is found to be caused mainly by the 
exclusion of the fluid by the particles, which generates a radial component of the fluid 
velocity directed towards the vortex centre. Owing to the increased concentration of 
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particles, the drag force is modified by the hydrodynamical interactions between the 
particles and the backflow effects (Batchelor 1972), so that the growth of the 
concentration wave crest is reduced. Solutions obtained also show that the generation 
of the concentration waves occurs most efficiently for values of St close to a critical 
value which is found to be of order unity. 

The objective of this work is to study both analytically and numerically the processes 
of two-way interaction in two-dimensional regular flows laden with solid heavy 
particles. The flow Reynolds and Froude numbers are assumed to be large enough that 
the viscous dissipation and the effects related to gravity are insignificant. We assume 
also that the particulate concentration is small enough to neglect the effects of 
particle-particle interactions and consider particles with Stokes number of order unity, 
when the accumulation processes are intense. Only the case of particles with Reynolds 
number of order unity is studied, when the nonlinear effects in the drag force upon the 
particle remain weak. 

First, we study the problem analytically, deriving an approximate solution for the 
particle velocity in the form of a series in St. Using this solution we simplify the original 
set of equations and obtain analytical solutions of a Cauchy problem for an initially 
uniform distribution of particles in several types of flows representing steady solutions 
to the two-dimensional Euler equations. We consider flows in the vicinity of a 
hyperbolic stagnation point (where the vorticity is zero and strain rate is uniform) and 
of an elliptic stagnation point (where strain is weak and vorticity is uniform), and a 
circular vortex (where vorticity is a decreasing function of the radius). 

Solutions obtained for the flow in the vicinity of the stagnation points show that the 
concentration decreases at the elliptic point and grows at the hyperbolic point. Owing 
the effects of coupling between the fluid and particle motion, the vorticity is reduced 
at the elliptic point, while flow strain rate is enhanced at the hyperbolic point. In this 
case both the particle concentration and the flow vorticity and strain fields remain 
uniform. 

The solution for the concentration dynamics in a circular vortex is qualitatively 
similar to the earlier results derived for St 4 1 (Druzhinin 1994). The accumulation of 
particles proceeds in the form of a travelling wave, when the concentration of particles 
increases locally forming the wave crest propagating away from the vortex centre. The 
process is found to be less robust for larger mass loading ratio (which is equal to the 
particulate volume fraction multiplied by the ratio of the particle and fluid densities). 
The solutions derived show that owing to the increased inertia (larger St) the particles 
effectively change the fluid flow, reducing vorticity in the core. At the location of the 
concentration maximum the flow gradient grows owing to the enhanced drag force 
between the two phases and a peak of the vorticity field is generated. Results obtained 
for St = 0.5 in numerical simulations are found to agree well with analytical solutions. 

We also perform numerical simulations for the more complicated case of a particle- 
laden chain of Stuart vortices and compare numerical results with analytical solutions 
obtained for local flow zones (at the centres of the vortices and in the braid region, in 
the vicinity of the hyperbolic stagnation point between the vortices). The concentration 
decreases in the vicinity of the vortex centres and grows in the braid region and at the 
periphery of the vortices. The coupling effects result in a vorticity reduction in the 
vortex centres and a strain rate enhancement in the braid region of the flow. Owing to 
the flow advection and the accumulation process a sheet of increased concentration is 
formed which extends from the braid region to the periphery of the vortices (a feature 
revealed earlier both experimentally and numerically in a number of free shear flows 
seeded with heavy particles, see e.g. Chung & Troutt 1988; Longmire & Eaton 1992; 
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Lazaro & Lasheras 1992a, b; Tang et al. 1992; Martin & Meiburg 1994). At the 
location of the concentration maximum the drag force is enhanced, so that a sheet of 
increased vorticity is generated by the coupling between the fluid and particle motions. 
Analytical solutions for the vorticity and strain in the vicinity of the centres of the 
vortices and in the braid region and an estimate for the vorticity local peak at the 
periphery of the vortices well agree with the numerical data. 

The paper is organized as follows. In f 2  equations of motion describing evolution of 
the particulate and fluid phases in the dilute limit are formulated. Using an 
approximate solution for the particle velocity, the problem further is studied 
analytically in $3 for an initially uniform distribution of particles in flows in the vicinity 
of the elliptic and hyperbolic stagnation points and in a circular vortex. Results of 
numerical simulations performed for the circular vortex and analysis of the two-way 
interaction in the particle-laden Stuart flow are presented in $4. A short summary and 
conclusions are given in $ 5 .  

2. Governing equations 
We use the equations of motion developed for dilute particle-laden flows where 

particleparticle collisions are negligible (So0 1967 ; Elghobashi & Abou-Arab 1983 ; 
Nigmatulin 1987; Shraiber et al. 1988). It is assumed that particles are solid spheres of 
diameter d, which is much smaller than the characteristic flow lengthscale L. On a scale 
much greater than d but much smaller than L the particles are regarded as a continuum 
with volume fraction C(I, t )  = ndan/6, where n is the number of particles per unit 
volume. Further we denote as c the particle concentration (for d a uniform constant, 
the actual concentration n is directly proportional to c). 

The conservation equations for the fluid momentum and mass are 

D U  1 
(1-c)- = --VVp-c~F+(l-c)g+V..3, 

Dt Pf 

ac --V.(l-C) u= 0. 
at 

The corresponding equations for the particulate phase are 
d V/dt = F+g, 

a c / a t + v . c v =  0. 

The notation used in (1)-(4) is that U and V are the fluid and particle velocities, 
respectively, c the particulate volume fraction (or concentration), 6 = pp/pf the ratio of 
the particle and fluid densities, F the force acting on the particle from the ambient fluid 
and g = -geZ, e, = (O,O, 1) the acceleration due to gravity. Derivatives D/Dt = 
a / a t  + V and d/dt = a /a t  + V. V are taken along the Lagrangian (fluid) path and 
the particle trajectory, respectively, and the notation for the viscous term is 

where v is fluid kinematic viscosity. 
In the case of small heavy particles (such that d 4 L and 6 B 1) the main 

contribution to the force F is from the viscous drag, while inertial forces (due to the 
pressure gradient and added mass) and the Basset history force are negligible (Maxey 
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& Riley 1983). For particles with Reynolds number of order unity the force is described 
by the empirical formula (Clift, Grace & Weber 1978) 

1 
7, 

F = - ( U -  V)f(Re,), 

with parameters 
d 2  I V - v l d  r p  = -8, Re, = I 18u U 

corresponding to the particle response time and Reynolds number, respectively, and 
the function ARe,) having the form 

ARe,) = 1 +0.15Re:l3. (6) 
Introducing dimensionless variables 

where U, and L are a characteristic flow velocity and spatial scale, we can rewrite 
equations (1)-(4) in the form 

( 1  - c ) ~  D U’ = -Vp’+- (V’ -  C 8  U’)ARe, ) - ( l  -c ) -+-V.?’ ,  ez 1 
St Fr Ref 

V-[cV’+(l-c) U’] = 0, (9) 

- dV’ = -(U’- 1 V’)f(Re,)--ee,, 1 
dt’ St Fr 

(1 1) 
ac 
at! 
-+V.cV’  = 0. 

In (8)-( 11) the particle Stokes number St is defined as the ratio of particle response time 
to a characteristic timescale LIU,  of the flow, 

and parameters 
Ref = U, Llv, Fr = Ui/(gL)  

correspond to the flow Reynolds and Froude numbers. 
The exchange of momentum between the fluid and particles is due to the drag (or 

friction) force and depends on the local values of both the slip velocity V- U and the 
mass loading ratio c8. Generally, there is no ‘preferred’ direction of momentum 
exchange, i.e. particles may locally both enhance and weaken the carrier flow. The 
modified continuity condition (9) reflects the fact that the two phases are mutually 
exclusive. 

In the general case the set of equations (8x11) can be studied numerically. 
However, if the particle Stokes number is sufficiently small, some useful analytical 
solutions can be derived. In this case the velocity of the particle adjusts to the local fluid 
velocity under the action of the drag force on a timescale less than the flow variation 
time LIU,  (Manton 1974; Nielsen 1984; Maxey 1990; Tio et al. 1993b). Thus, using 
St as an expansion parameter, we can represent V in the form (Druzhinin & Ostrovsky 
1994 ; Druzhinin 1994) 

V = V(O) + St V ( l )  + St2 V2’ + . . . . (14) 
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Here and below, for convenience, primes on the dimensionless variables are omitted. 
Substituting (14) into (10) and solving iteratively, we obtain solutions for zeroth-, first- 
and second-order terms : 

Po) = U-e,  4, (15) 

where the function ARe)  is given by (6). The term in (15) corresponds to the usual 
passive advection solution Y = U modified by gravitational settling with terminal 
velocity W, defined from the equation 

K A R e , )  = St/Fr, (18) 
where Re, E K d / v  

is the particle Reynolds number based on W,. When Re, < 1 Cf(Re,) z l), 6 obtained 
from (18) corresponds to the well-known result 

K = St/Fr, 
or, in dimensional form, W, = 7 p g  which equals to the Stokes terminal velocity. It 
follows from (1 6)-( 18) that the nonlinearity of the drag force upon the particle reduces 
both the terminal velocity and inertial corrections in comparison with the linear Stokes 
drag law (see Wang & Maxey 1993 and references therein). 

The first-order inertial correction (16) becomes dominant compared to the second- 
order term in (17) for sufficiently small particles, such that St < 1 (cf. Maxey 1990). 
Then, substituting solutions (14), (15) and (16) for the velocity into (8) and (11) we 
derive the following equations for the fluid flow and concentration (Druzhinin 1994): 

D U  au e l  
Dt az Fr Ref 

(1 +cS)- = -vp+ W,cS--(1 +cS)“+-V*?, 

V.[cV+(l-c) v] = 0, 
DC ac DU 
DI a2 Dt _- w,- = StV*c-. 

According to (19), particles with very small Stokes number effectively 
local fluid density, which can be written as 1 +cS. 

In the limit of negligible mass loading ratio, cS+ 0, the influence of the particular on 
the fluid phase can be neglected. In this case, particle dynamics and the evolution of 
the concentration are driven by the fluid flow. For initially uniform distribution of 
particles c(r, t = 0) = c, the ‘source’ on the right-hand side of (21) is 

St C, V - D U/Dt = St c,(S,j Sj, - $ j  u,), (22) 
where S,  = &XJ,/ax,+aUj/axi) and wi = s,,,aUk/8x, are the strain rate tensor and 
vorticity of the flow, respectively. 

It follows from (22) that the concentration decreases in regions of high vorticity and 
low strain rate and grows in regions of strong irrotational strain. Thus, the distribution 
of particles may become quite non-uniform as, owing to the inertial bias, the particles 
accumulate locally in corresponding flow zones (Maxey 1990; Squires & Eaton 1991 ; 
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Wang & Maxey 1993). As has been found previously, local values of the concentration 
may be substantial. Thus, the local mass loading ratio may become large enough for 
the particles to effectively influence the fluid flow, when the two-way interaction 
between the two phases plays an important role, even for initially small particulate 
concentrations. One can also expect that eddy zones of the flow with high vorticity (in 
the vicinity of vortex centres or elliptic stagnation points) and convergence zones of 
high strain (which correspond to hyperbolic stagnation points) may be affected by the 
particles most significantly. 

As was mentioned above, some analytical and numerical results have been obtained 
recently for a particle-laden circular vortex for the case St 4 1 (Druzhinin 1994). Now 
we address the problem of the two-way interaction for several types of particle-laden 
flows, where the eddy and convergence zones are pronounced, and consider particles 
with St ,< 1 when the processes of particle accumulation are intense. 

We assume that the flow is regular and of a sufficiently high Reynolds number, so 
that viscous stresses can be omitted in (8). The case of a sufficiently small c is 
considered, such that both fluid continuity and viscosity are not affected by the 
concentration. Then, we can omit terms proportional to c in (8) and (9) (note, however, 
that the corresponding mass loading ratio c8 may not be small for sufficiently large 8). 
We assume also that the flow Froude number (13) is large (and thus W, is small and 
ARe,) z 1) and consider the two-dimensional case, when the vertical settling does not 
affect the dynamics of the system, so that terms related to gravity can be neglected. Thus 
(8)-( 11) can be rewritten in the form 

cs D U  
Dt St 
-- - - V p + - ( V -  U)ARe,), 

v .  u= 0, 
dV 1 
- = -(U- V)ARe,), dt St 

ac 
- + v - c v =  0, 
at 

(23) 

with the functionfand parameters Re, and St given by (6) and (12), respectively. 
Further we consider a Cauchy problem for the set of equations (23x25) with an 

initially uniform distribution of particles in several types of flows representing steady 
solutions of the two-dimensional Euler equations. 

3. The accumulation of particles and flow modification: an analytical 
approach 

Let us consider the case of a sufficiently small Stokes number, when solution 
(14x17) for the particle velocity can be used. Taking into account corrections up to 
second order in St and omitting terms related to gravity we obtain a solution for the 
velocity in the form 

D U  D D U  D U  
Dt V = U - S t - + S t 2  --+ --v u .  (Dt Dt ( D t  ) ) 

Substituting (26) into (23)-(25) we obtain a reduced set of equations which then is 
solved analytically for several types of two-dimensional flows. We study the evolution 
of an initially uniform particle concentration and the corresponding modification of 
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the carrier flow in the vicinity of a hyperbolic stagnation point (with a uniform strain 
and zero vorticity) and an elliptic stagnation point (where the flow vorticity is uniform 
and strain is weak), and in a circular vortex (with vorticity depending on the radius). 

3.1. Hyperbolic stagnation point 
Let us consider the process of particle accumulation in the flow in the vicinity of a 
hyperbolic stagnation point which corresponds to the convergence zone (Squires & 
Eaton 1991). Solutions for the fluid velocity and particle concentration fields can be 
represented in the form 

W) = { - 4 7 ) X , 4 7 ) Y L  c = 47), (27) 

using the notation 7 = St t. We assume that the concentration and coefficient a, being 
uniform constants initially, c(0) = c, and a(0) = a,, change with time owing to the 
coupling between the fluid and particles dynamics. 

The flow strain is expressed as 

s;~7)  = auu/ay = S:J~) = a u x / a x  = -a(7). (28) 

(29) 
Performing straightforward calculations we obtain from (26) an approximate 

The pressure field corresponding to (23) and (27) is given by 

p ( x ,  y, 7 )  = -id( 1 + CS) (x2 + y”. 

solution for the particle velocity up to second order in St in the form 

where the overdot corresponds to the derivative a/&-. Substituting (27)-(30) into (23) 
we obtain the following equations for a and c: 

Solving (3 1) we derive equations which define coefficient a and concentration : 

2 4  
St t .  

a(t) - l+cS  CS I t  
a, 1 +c,S’ k n i T z + i T z ) l ,  = (1 +C,&)Z 

Thus for the strain we obtain 

S h  ( t )  Sh  ( t )  1 +cS 

S2,(0) Si,(O) 1 + c, 6’ 
xz=YY=- 

In the case of small mass loading ratio CS 4 1 we find from (32) and (33) that 

(33) 

Therefore, particles accumulate in the vicinity of the hyperbolic stagnation point, 
enhancing the local flow strain, so that both c and S grow exponentially. Physically, 
(34) shows that momentum is transferred from the particles to the fluid owing to the 
convergent structure of the flow. 

We should point out that in deriving the set of equations (31) and solutions (32) we 
assume that particles initially move with a velocity corresponding to (26). Thus, we do 
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not consider a transient, after which (26) sets in, which is of the order At x St. During 
this initial time interval a different dynamics of the strain and vorticity fields may be 
found. 

Note that the problem of particle motion in flow, (27), was considered earlier by 
Martin & Meiburg (1 994), where the drag on the particle was assumed to be linear and 
the influence of the particulate on the fluid flow was neglected. Numerical and 
analytical solutions obtained show that for large St (St 2 1/4a) motion of the particle 
becomes non-monotonic, such that the particle oscillates around the y-axis in the 
vicinity of the stagnation point. A scaling argument was proposed suggesting that the 
build-up of particles at the stagnation point is most robust for St < 1/4a, when the 
particle still moves along the flow streamlines without oscillations. In this study we 
consider St to be sufficiently small that the approximate solution (26) remains 
applicable. 

3.2. Elliptic stagnation point 
Let us now consider an initially uniform distribution of particles in the flow in the 

vicinity of an elliptic stagnation point, where the fluid velocity field is that of an 
elliptical ‘solid’ vortex (Lamb 1975). Then, solutions for the fluid velocity and 
concentration can be written in the form 

(35) U(t) = { - a(7) y ,  b(T) x } ,  c = c(T), 7 = St t ,  

with initial conditions 
c(0) = c,, a(0) = a,, b(0) = b,, 

where product a, b, is a positive constant. The corresponding vorticity, strain and 
pressure fields are then given by 

An approximate solution for the particle velocity derived from (26) for 
velocity U given by (35) is 

V, x - ay + St abx + St2(by + 2a2by),\ 

V, w ax + St aby - St2((dx + 2ab2x), J 

(36) 

the fluid 

(37) 

where, as above, the overdot denotes the derivative with respect to 7 .  Substituting 
( 3 5 x 3 7 )  into (23) we derive the following system: 

C8 c8 
1 +cS’ 1 +c8’ 

a=-2a2b- b ’ = -2ab2- C = -2abc. 

From (38) we find the equations from which the concentration and coefficients a and 
b (cf. (32)) are obtained: 

2ao bo St t. (39) 
a(t) - b(t) - - 1 + c(t) 6 ( l n - + L ) l t  c8 = - 
a, b, l + c , S  ’ 1+c8 1+c8 0 (1+c,8)2 

Thus, the flow vorticity and strain are given by 
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From (39) follows that for times t % St-’ concentration decreases exponentially, 

At sufficiently large times c becomes exponentially small. Then, from (40) we derive 
asymptotic expressions for vorticity and strain : 

Therefore, owing to the interaction between the two phases the particle concentration 
decreases exponentially, while both vorticity and strain of the flow are reduced as 

Solutions (39H41) show that momentum is transferred from the fluid to the 
particles and the flow is weakened. 

In the axisymmetrical case a, = b, flow (33 ,  (36) corresponds to that in the ‘solid’ 
circular vortex with vorticity 0,(7) = 2a(7). In cylindrical coordinates fluid velocity 
field (35) is written as 

and solution (37) for the particle velocity takes the form 
U+ = ar, U, = 0, 

I V ,  = St q / r ,  

V+ = U,&1-2St2a2)-St2ar = U, { I-- ?::}*] I (43) 

Solutions (43) for the velocity describe rotation and radial drift of the particles, so that 
the concentration decreases in the vortex centre (cf. Maxey 1990). Owing to the inertia, 
locally the particle angular velocity is less than that of the fluid, so that the momentum 
is ‘absorbed’ by the particulate under the action of the drag force while the rotation 
of the fluid is slowed down and vorticity is reduced. 

In the above examples both particulate concentration and flow vorticity fields 
remain uniform. Below we consider a particle-laden circular vortex where the 
accumulation of particles and flow modification proceed in the form of a travelling 
wave. 

3.3. Concentration waves and $ow modij?cation in a circular vortex 
Let us consider an initially uniform distribution of particles in a circular vortex with 
angular velocity U&, St, t ) .  Up to second order in St the solution for the particle 
velocity (26) in this case can be written as (cf. Druzhinin 1994 and (43)) 

V, = St U $ / r ,  
V4 = U+ { 1 - 2 (st U+/r)2} - St au,/at. 

Substitution of (44) into (23) gives the following equations describing the evolution of 
the concentration and fluid angular velocity : 

I (44) 

ac st a -+- - (cU$)  = 0, 
at r ar 

at 

au u3 cs 
- @ + 2 S t A -  

r2 1 + cs  = O* 

(45) 
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From the continuity condition (24), which in the axisymmetrical case is written as 

i a  
--rUr = 0, 
r ar 

we find that radial component of the fluid velocity is identically zero. The pressure in 
the vortex is expressed as 

(47) 
Together with initial conditions 

(1 + cS) q / r  = a p p .  

U&r, 0) = Ur) ( r ) ,  c(r, 0) = c, (48) 
equations (49447) represent a Cauchy problem for the two-phase flow considered 
here. 

In the case of very small concentration, such that mass loading ratio is negligible, 
CS-+ 0, 

the fluid flow remains unchanged and the particle dynamics and evolution of the 
concentration are driven by the fluid velocity field. Then, solution of the Cauchy 
problem for the concentration can be obtained after integration of (45) along 
characteristics in the general form (cf. Druzhinin 1994) 

(49) C(tY t )  = co(r0) q ( r o ) /  q r > Y  

where U+(r) = V$')(r) and function ro(r, t )  is implicitly defined by the equation 

As an example, we consider a steady circular flow with angular velocity field 

The corresponding vorticity field is then given by 

Fluid flow (51) coincides with that in a 'solid' vortex with uniform vorticity wo = 1 for 
which U+ x r / 2  for small radius (r  < 1) and with that in a point vortex U+ x 1/2r for 
r B 1. Region r < 1 can be regarded as the core of the vortex. 

For U+ defined by (51), integration of (50) can be performed explicitly. Thus, the 
following equation for r,, is obtained: 

(53) 
Once function ro(r, t )  is found from (53), the solution for the concentration is obtained 
from (49) and (51) in the form 

In r,, + ri +:r: = In r + ra +$r4 -$t t .  

As has been shown recently (Druzhinin 1994), solutions (53) and (54) describe 
a radial travelling concentration wave starting from an initially uniform particle 
concentration field and propagating away from the vortex centre. 
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Indeed, as follows from (54), at a given point r the concentration grows for 
r,(r, t )  > 1 and drops for ro(r, t )  < 1. Thus, as follows from (53), in the vortex core, for 
r < 1, the concentration only decreases with time, while in the outside region, for r > 1, 
it grows for t < t ,  (where ro(r, t,) = 1) and then decreases. The location of the 
concentration maximum r = r,, at time moment t = t,, is defined by the condition 

ro(r, t )  x 1 

obtained from ac/ar = 0 with the use of (53) for r,, b 1. Thus, the locations of the wave 
crest rcr(tcr) and concentration maximum ccr(rcr, t,,.) at the crest are derived from (53) 
and (54) in the form 

In r,, + r:, + fr;, = fSt t,, +a, (55) 

The effective local propagation velocity S,, = drcr/dt,, of the wave crest is expressed 
using ( 5 5 )  as 

(57) 

In the region close to the vortex centre, ro(r, t )  decreases exponentially, and from (53) 
and (54) we find 

ro(r, t )  x r exp ( - +St, t ) ,  c(r, t )  x c,  exp ( - :St t )  for r Q 1. (58 )  

For r < rcr at times t b t,, solutions for ro and c coincide with (58). In the region far 
away from the crest, at time t Q t,,, from (53) and (54) we obtain solutions for r, and 
c in the form 

e ( r ,  t )  x r4 - St t, c(r, t )  x c, r2 (r4 - St for r % rcr. (59) 

Solutions (56)-(59) describe the process of particle accumulation in the limit cS+O 
which proceeds in the form of a travelling concentration wave. The crest of the wave 
propagates out of the vortex, so that the concentration grows in front of the crest, for 
r > re,, t < t,,, and decreases exponentially for r < re,, t > t,,, so that a steep well forms 
behind the crest (cf. Druzhinin 1994). 

Let us now take into account the effects of coupling between the particles and the 
carrier flow. 

In the vicinity of the vortex centre, flow (51) is the same as that in a ‘solid’ circular 
vortex with uniform vorticity equal to unity. Thus, solutions for the concentration and 
fluid flow are analogous to those obtained above for the flow in the vicinity of an 
elliptic stagnation point with coefficients a, = 6, = f (cf. (43)). Thus, we derive the 
following equation for the particle concentration (cf. (39)) : 

(ln-+J--)l‘ CS = - St t 
1+cs  1+cs 0 2(1+c0S)2’ 

while the vorticity is found from the equation (cf. (40)) 

w(r, t) - 1 + c(r, t )  s 
w(r,O) 1+c,s ’ r Q  1. -- 
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For t 9 St-’ the concentration decreases exponentially, so that vorticity in the core is 
reduced as 

where o(0,O) = 1.  
Approximate solutions describing the dynamics of the concentration wave crest and 

the fluid flow modification outside the vortex core can be obtained for sufficiently small 
particulate mass loading ratio, 

c S 6  1 .  

A first-order correction to the dynamics of the concentration wave crest can be 
calculated with the use of an equation obtained from (45) and (46) in the form 

d 
dt - (cU$)=-4StS 

where derivative d/dt is taken along characteristics, 

r 

Then, integrating in (63) over time we find 

where r(t)  is defined by (64). Performing the integration in (65) along the ‘undisturbed’ 
crest trajectory ( 5 9 ,  where the relation 

S t d t = 4  -+2r+r3  dr  

holds and using expression (51) for the velocity U$, we obtain the following expression 
for the concentration at the crest: 

(66) 

where cg)(rc,) is given by (56). According to (66), the growth of the concentration at 
the crest is slowed down by the coupling for larger mass loading compared to the case 
CS-tO.  

The fluid velocity can be represented as a sum of the background field and a first- 
order correction, 

where U g )  is described by the equation obtained from (46) to first order in cS: 

c 1 
c,, * cfp! { 1 -:co + 8 In rcr - 1 - Ti: ) } ,  

(67) u - u(0) 
$$ - $ (r) + u p ( r ,  0, 

Integrating in (68) over time we derive the following solution for the velocity: 

U&r, t )  = Ur) ( r )  1 -2StS d0)(r ,  t’)dt’ , { (u:YL I 
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where c(O)(r, t )  is given by (54). From (69) it follows that the fluid velocity decreases as 
the concentration wave crest propagates away from the vortex centre. Since the 
concentration sharply increases for r x rcr and becomes exponentially small behind the 
crest, for r < r,,, t > t,,, a sharp gradient in the velocity field forms. The corresponding 
peak of the vorticity field at the location of the crest can be estimated as follows. 

From (69) we obtain the following expression for the vorticity: 
w = w(r, 0)  + Aw(r, t ) ,  

where correction Aw, described by the equation 

is of first order in cs. Performing the integration in (70) along the crest trajectory ( 5 5 )  
and using solution (56) for the concentration and (51) for the fluid velocity at the crest 
for r,, P 1 we obtain an estimate for the vorticity peak at the location of the 
concentration wave crest in the form 

Awe, x $c,6 for rcr % 1. (71) 
Therefore, solutions (60), (61), (66) and (69) describe the particle accumulation and 

the flow modification in the form of a travelling wave. The concentration grows locally 
forming the crest of the wave which propagates away from the vortex centre. Since 
owing to the inertia the particle angular velocity locally is less than the fluid velocity 
(cf. (43)), the momentum is transferred to the particulate, while the fluid angular 
velocity is decreased under the action of the drag force. In the vortex centre the 
concentration remains almost uniform and decreases exponentially and the vorticity is 
reduced (cf. (60), (61)). When the concentration wave crest is located sufficiently far 
away from the vortex core, the gradient of the fluid velocity grows owing to the 
enhanced drag force and the peak of the vorticity field (71) is generated at the location 
of the concentration wave crest. 

4. Numerical results 
In this section we present results of a numerical simulation of the set of equations 

(23)-(25) performed for the particle-laden circular vortex. We also study the processes 
of the two-way interaction in a chain of particle-laden Stuart vortices through 
numerical integration of the problem and using the analytical approach discussed 
above. 

4.1. Numerical simulations of the particle-laden circular vortex 
In the axisymmetrical case the set of equations (23H25) can be rewritten in cylindrical 
coordinates as 

ac I a 
-+--(rcV,) = 0,  
at r d r  
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FIGURE 1. The particle concentration in the circular vortex at different times (full curves) obtained by 
DNS of equations (72) with an initially uniform distribution of particles in flow (73) for (a) co 6 = 0.03 
and (b) c,6 = 0.3, with St = 0.5. Dashed and long-dashed curves correspond to solutions for the 
location of the crest (56) and (66), respectively. Short-dashed curves correspond to the crest trajectory 
obtained numerically. Here and below the dimensionless time is expressed in St-' units. 

whereARe,) is given by (6). In (72) we take into account that the radial component of 
the fluid velocity vanishes owing to the continuity condition. 

Initial conditions corresponding to a uniform distribution of particles in the circular 
vortex considered above are written as 

for the fluid velocity and 

V&r, 0) = U&, 0), v(r, 0) = 0, c(r, 0) = co (74) 
for the particular velocity and concentration fields. 

We used a MacCormack marching algorithm (Fletcher 1990) (see the Appendix) to 
solve problem (72H74) numerically for parameters U, d/v = 1, St = 0.5 and for two 
different values of the initial mass loading ratio cod = 0.03 (case a) and cod = 0.3 
(case b). It was observed that in this case Re, remained of order unity throughout the 
simulations. 

The development of the concentration wave and the corresponding modification of 
the carrier flow at different times are shown in figures 1 ( a t 3  (a) and 1 (b)-3 (b) for cases 
(a) and (b), respectively. 

Solution (66) for the crest trajectory obtained for cd .g 1 (long-dashed curve in figure 
la)  quite accurately describes the trajectory of the crest, obtained numerically for 
co 8 = 0.03 (short-dashed curve in figure 1 a). The growth of the crest is slowed down 
compared to the value of do) given by solution (56) derived in the limit of negligible 
mass loading ratio co d+ 0 (dashed curve in figure 1 a) (some differences are caused by 
the finite value of St which is comparable to unity here). For larger values of the mass 
loading ratio (c, S = 0.3 for case b) the growth of the concentration wave crest becomes 
less robust. 
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FIGURE 2. Angular fluid velocity corresponding to figure 1 (a, b) at times (a) t = 0, 600 (short-dashed 
and solid curves, respectively); (b) t = 0, 20, 200, 600 (short-dashed, dashed, long-dashed and solid 
curves, respectively). 
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FIGURE 3. Vorticity field corresponding to figure 1 (a, b) at times (a) t = 0,600 (short-dashed and solid 
curves, respectively); (b) t = 0, 20, 200, 600 (short-dashed, dashed, long-dashed and solid curves, 
respectively). 

Numerical data for the fluid angular velocity and vorticity fields presented in figures 
2(a, b) and 3(a, b) also are in good agreement with the analytical solutions. The 
reduction in the angular velocity and vorticity in the core of the vortex is fairly well 
predicted by (62) (in cases (a) and (b) we find w(t)  w 0.97 and w(t)  w 0.73, respectively, 
which are quite close to the numerical data, figures 3 a and 3 b). The generation of the 
vorticity peak at the location of the concentration wave crest is more pronounced in 
case (b), where the vorticity increases up to the value Aw z 0.06 while from estimate 
(71) we obtain Aw,, z 0.05. 
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4.2. Accumulation of particles andpow modification in a chain of Stuart vortices 
In the examples discussed above we consider flows with a simple structure. In this 
subsection we study the evolution of particle-laden Stuart flow. This flow consists of 
a chain of co-rotating vortices and may be regarded as an idealized model with a 
structure similar to that of a plain mixing layer (see e.g. Tio, Gaiian-Calvo & Lasheras 
1993a; Lazaro & Lasheras 1993a,b; Gaiian-Calvo & Lasheras 1991). We present 
results of the numerical simulations and compare them with solutions derived with the 
use of the analytical approach discussed in $ 3 .  

In the two-dimensional Cartesian coordinates, equations for the carrier flow (23) 
and (24) can be represented in the ' vorticity-stream function' variables (Fletcher 
1990). Introducing the flow stream function Y(x,  y )  due to the continuity condition as 

and using the relation 

we obtain an equation for the vorticity in the form 

w=--A!P,  

Equations for the particulate momentum and concentration are written as 

(79) 
ac 
at 
-+v.cv= 0. 

Let us consider an initially uniform distribution of particles in the Stuart flow. This 
flow represents a steady solution to the two-dimensional Euler equations and is defined 
by the stream function which can be written as 

(80) 

with a free-stream velocity U, = ( 1  - ~ ) / ( l  +K). The fluid velocity and vorticity fields 
according to (75) and (76) are given by 

Y(x, y )  = - Uo In (cosh y - KCOS x), 

sinh y K sin x 
cosh y - K cos x ' u' = "cosh y - K cos x ' 1 (81) 

u, = -uo 

w = (1-K)2exp(2Y/U0). 

For 0 < K < 1 flow (81) corresponds to that in a row of co-rotating vortices with 
vorticity equal to unity at the vortex centres (with coordinates x = 2nn, y = 0, n = 0, 
& 1.. .). In the limiting case K = 0 the flow coincides with that in the tanh-mixing layer, 
while for K = 1 it corresponds to a row of point vortices. In the numerical simulations 
we used K = 0.5 (the corresponding stream function (80) and vorticity field (81) are 
shown in figure 4a,  b). 



66 0. A .  Druzh in in 

-2 

2 

1 

Y O  

-1 

-2 - 
OA' -0.0, z 

-3 
0 1  2 3 4 5 6  

FIGURE 4. (a) Stream function (80) and (b)  vorticity (81) for the Stuart vortex flow with K = 0.5. 

We solved the Poisson equation (76) defining the flow stream function for a given 
vorticity field and advanced equations (77)-(79) in time using a MacCormack 
marching algorithm (Fletcher 1990). We used a 100 x 100 grid in the region 0 < x < 2n, 
--R < y < -R with periodic boundary conditions over x and the free-stream velocity 
condition U, = 0, U, = & U, for y = T-R. The grid used was found to be large enough 
to resolve the flow scales essential for the present study. The parameter choice used was 
analogous to that in case (b) for the circular vortex (U,, d/v  = 1, St = 0.5, c, 6 = 0.3). 
Initially the fluid velocity and vorticity were as given by (81) (figure 4). The particulate 
velocity was initially equal to the fluid velocity, the concentration being a uniform 
constant. As was observed for the case of the circular vortex (§4.1), for this parameter 
choice the particle Reynolds number also remained of order unity. 

The concentration and vorticity fields at times t = 7 and 14 are presented in figures 
5(a, b) and 6(a ,  b) respectively. 

The concentration of particles decreases at the centres of the vortices (which 
correspond, in fact, to elliptic stagnation points) and increases in the braid region, in 
the vicinity of the hyperbolic stagnation point between the vortices (figure Sa, b). At 
times t > 10, owing to the accumulation and the flow advection processes, a sheet of 
increased particle concentration develops extending from the braid region to the 
peripheries of the vortices (figure 6a, b). 

The vorticity is reduced in the vortex centres and is increased at the location of the 
concentration maximum. At later stages pronounced sheets of increased vorticity and 
concentration are formed (figures 6a, b and 7). 

In order to apply the analytical approach used in 43, it is convenient to consider 
different zones of the flow (Squires & Eaton 1991), corresponding to the vortex centres 
(i.e. eddy zones in the vicinity of the elliptical stagnation points with coordinates x = 
0, 2n, y = 0) and to the braid region (i.e. the convergence zone in the vicinity of the 
hyperbolic stagnation point x = x, y = 0). 

Let us first consider the centres of the vortices x, = 0, 2n, ye  = 0, where the fluid 
velocity field (81) can be represented locally as (cf. (35)) 

u, M - a,(t) y,  u, w b,(t) x (82) 
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FIGURE 5. Results of DNS of the Stuart flow with an initially uniform distribution of particles. (a) 
Surfaces and (b) contour maps of the particulate concentration (top) fluid vorticity fields (bottom) 
obtained at t = 7 for c,8 = 0.3, St = 0.5. 
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FIGURE 6. (a) Surfaces and (b) contour maps of the particulate concentration and fluid vorticity 
fields corresponding to figure 5(a, b)  but at t = 14. 
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FIGURE 7. Cross-section of the vorticity surface o(x = 0 ,y )  at times t = 0,7,14 (short dashed, 

dashed and solid curves, respectively) corresponding to figures 5(a) and 6(a). 

for 1x1, lyJ < 1. Coefficients a,, be are initially equal to a,(O) = 1/(1+ K) ,  be(0) = a,(O) K .  
Then, the problem of the evolution of the flow (82) with an initially uniform 
distribution of particles is identical to that for the elliptic stagnation point considered 
in $3.1. Solutions for the concentration and flow vorticity and strain are obtained in 
the form (cf. (39), (40)) 

2 K  

S" ( t )  w ( t )  1 + c s  
s:,(o) w,(O) 1 +C,S '  
ZY=e=-  

(83) 

Therefore, for t 9 St-' the concentration decreases exponentially, while the vorticity is 
reduced as 

where we(0) = 1 in the case considered. 

the fluid flow is locally given by 
In the braid region, in the vicinity of the hyperbolic stagnation point xh = x, Y ,  = 0 

u, % - ah(t) Y ,  u, % - bh(f) x, (85) 

where 1x1, Iyl < 1, and for the coefficients we initially have a,(O) = Uo/(l + K ) ,  

bh(0) = ~ , ( O ) K .  Expressions for the local strain and vorticity are 

S!& = -;(a, + b,,), 0, = ah - b,. 

The solutions for the particle velocity, coefficients a,, b, and concentration can be 
derived in a way analogous to that discussed in $ 3.2. (Note, however, that in the case 
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FIGURE 8. Time dependence of (a) the concentration and (6) vorticity at the vortex centre x = 0, y = 0 
corresponding to figures 5 and 6. Numerical data are represented by solid curves, dashed curves 
correspond to (83). 

considered here the flow is not potential.) Thus, the particulate concentration and the 
flow strain and vorticity are define by the equations (cf. (32)) 

It follows from (87) that the particle concentration and both flow vorticity and strain 
in the braid region grow with time. 

We performed an analysis of the particle motion in the flow (85)  similar to that done 
by Martin & Meiburg (1994) for co 6 = 0 (no influence of the particles on the fluid flow) 
and ARe,) = 1 (the viscous force is the linear Stokes drag force). We find that 
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FIGURE 9. Time dependence of (a) the concentration and (b) flow strain at the hyperbolic stagnation 
point x = IC, y = 0 (in the braid region). Numerical data are represented by solid curves, dashed 
curves correspond to (87). 

oscillatory motions of the particle arise for St > St, = 1/[4(a,b,)1/2]. Thus, for the 
value K = 0.5 considered here we find St, = 9.42/2 = 1.6. In the numerical simulations 
we take St = 0.5 which is always smaller than St,, which ensures the applicability of 
solutions (87). 

Solutions (83) and (87) are compared with the numerical data in figures 8 (a, b) and 
9(a,  b). The time dependence of the vorticity and concentration obtained numerically 
at the vortex centres (solid curves in figure 8 4  b) agree well with solutions (83) (dashed 
curves). At the hyperbolic point there is good agreement between the numerical data 
and solutions (87) for the local strain and concentration for times t < 10, when S,, and 
c remain locally uniform (figure 9a,  b) (a slight reduction of the strain for t < 1 is 
related to the initial conditions for the particulate velocity). At later stages the 
concentration and flow strain and vorticity fields become strongly non-uniform (figure 
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6a, b).  As c grows locally, the sheet of increased concentration is generated owing to 
the particle accumulation and flow advection processes. Owing to the drag force the 
flow gradient and the vorticity are increased at the location of the sheet (figures 6a,  
b and 7). 

The value of vorticity peak w,,(x,y) at the location of the concentration maximum 
cc,(x, y,,) at the periphery of the vortices, for 1x1 < 1, y M ycr > 1, can be estimated for 
small mass loading ratio CS 4 1 as follows. 

The vorticity can be represented as a sum 

w = w‘O’(x,y) + Aw(x, y ,  t), (88) 
where correction Aw is of first order in c8. In the region considered, the fluid flow (8 1) 
can be represented as 

U, w - Uo( 1 + 2~ e-, cos x), U, x ~ K U ~  e-” sin x, 

V, z U, + 2 ~ t  U: K e-u sin x + 2 ~ t 2  U: K e-g cos x, 1 
V, x U, -k 2St U: K e-” cos x - 2St2 Ui Ke-y sin x. 1 

Keeping only terms proportional to the derivative which is large compared to the 
velocity derivatives and derivative ac/ax we derive from (77) an equation for the 
correction Aw in the form 

(89) 
and solution (26) for the particle velocity is 

(90) 

Expressing ac/ay as 

substituting the expression for the velocity (90) and integrating over time in (91), we 
find an estimate for the local vorticity peak: 

(92) 
where c,, corresponds to the local concentration maximum. 

For the parameters considered (K = 0.5, c, S = 0.3) and the value of the concentration 
maximum at x = 0, t = 14 obtained numerically, c,,/co w 1.2 (figure 6a, b), we obtain 
from (92) Aw,, z 0.12, which is close to the numerical data (figure 7). 

We did not perform computations for larger times, when smaller scales of the flow 
are generated which would require a higher spatial resolution. The numerical 
simulations were performed in order to demonstrate how the two-way interaction 
develops at the characteristic flow zones and to compare numerical data with analytical 
results. We did not study the effects of the nonlinearity in the drag force upon the 
particles for larger Re,. In the case considered, Re, < 1, these make the generation of 
the concentration waves less robust (as the nonlinearity causes a faster adjustment of 
the particle velocity to the local fluid velocity and reduces the effects of inertia (cf. 
Wang & Maxey 1993). 

Awcr x c,, uo 6, 

5.  Conclusions 
The processes of the two-way interaction in two-dimensional flows laden with solid 

heavy particles have been studied both analytically and numerically in the dilute limit 
(negligible particle-particle interactions). Regular flows with large Reynolds and 
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Froude numbers have been considered, where effects related to viscous dissipation and 
gravity can be disregarded as insignificant. We have considered an initially uniform 
distribution of particles with Stokes (S t )  and Reynolds (Re,) numbers of order unity 
in several types of flows representing steady solutions of the two-dimensional Euler 
equations. In particular, flows in the vicinity of the hyperbolic stagnation point (with 
a uniform strain and zero vorticity) and the elliptic stagnation point (where vorticity 
is uniform), a circular vortex (with vorticity depending on the radius) and Stuart vortex 
flow have been studied. 

Analytical and numerical solutions obtained describe the accumulation of particles 
and corresponding modification of the carrier flow. Solutions derived show that the 
concentration of particles decreases at the vortex centres (i.e. in eddy zones where the 
flow vorticity and curvature of the streamlines are high and the flow strain is weak) and 
grows at the periphery of the vortices and in the braid regions (in convergence zones, 
in the vicinity of the hyperbolic stagnation point, where the flow strain is strong and 
vorticity is low). The accumulation processes result in the generation of sheets of 
increased concentration extending from the braid region to the peripheries of the 
vortices. This is in agreement with previous findings and corresponds to the inertial 
bias effects discussed by many authors (see e.g. Maxey 1990; Squires & Eaton 1991 ; 
Wang & Maxey 1993). 

Owing to the coupling between the particle and fluid dynamics, the vorticity in the 
centres of the vortices is reduced, while the strain rate at the hyperbolic point of the 
flow grows. At the locations of the concentration sheets gradients of the fluid velocity 
are increased because of the drag forces between the two phases and sheets of increased 
vorticity are formed. 

The results obtained may have useful implications for the modification of turbulent 
flows by dispersed heavy particles. Results of DNS of particle dispersion in decaying 
isotropic turbulence (Elghobashi & Truesdell 1993) and experimental data for grid- 
generated turbulence seeded with heavy particles (Schreck & Kleis 1993) obtained 
recently show that the coupling between fluid and particulate dynamics leads to an 
enhanced energy cascade from the large-scale to small-scale components of the fluid 
motions and, hence, to a higher dissipation rate. Now it is well established that 
localized vortex structures represent an inherent feature of turbulent flows related to 
their intermittent nature (see e.g. She, Jackson & Orszag 1990; Ruetsch & Maxey 1991, 
1992 and references therein). The dissipation rate of the local kinetic energy of the fluid 
motion e is related to the flow strain tensor Si, = @U,/ax,+aU,/x,)  and fluid 
kinematic viscosity u as E = 2 u  (S i j  S,,), where angular brackets denote an average over 
an ensemble of realizations of the turbulent flow considered (Landau & Lifshitz 1987). 
Thus, the effects of the vorticity reduction at the centres of the vortices, enhancement 
of the strain in the braid region between the vortices and generation of the vortex sheets 
at the location of the sheets of increased concentration, discussed in this paper for 
several types of regular flows, may contribute to the energy cascade towards smaller 
scales and cause a higher dissipation rate in particle-laden turbulent flows. 

Of course, the model flows considered in this study are very simple compared to a 
real turbulent flow, where motions occur on a wide range of scales. On the other hand, 
the inertial bias effects and, hence, the pattern formation in the particulate distribution 
are most efficient when the timescale of the carrier flow is of the order of the particle 
response time (see e.g. Crow et al. 1985; Chung & Troutt 1988; Squires & Eaton 1991 ; 
Tang et al. 1992; Wang & Maxey 1993; Martin & Meiburg 1994; Druzhinin 1994). 
Thus, there are always ‘distinguished’ modes of the flow which influence the 
particulate most effectively. In this study we have considered idealized flow models 
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which may correspond to such modes and reflect some features of the two-way 
interaction between the particles and organized vortex structures in turbulence. 

The author is grateful to the referees for valuable comments and criticism. This work 
was supported by the Basic Research Foundation of Russia (RFFI grant N 93-02- 
16166) and by Goskomvuz of Russia. 

Appendix. Numerical scheme 
The set of equations (72) is discretized in accordance with the MacCormack 

marching algorithm (Fletcher 1990) as follows. 
The first (predictor) step calculates the intermediate values of Ut, Vt ,  V:  and c* of 

the angular fluid velocity, particulate angular and radial velocities, and concentration, 
respectively : 

6 * - Ut u+j - +j -t 5 At ci(Vij - UijIARej), 

The second (corrector) step obtains the values of 
Ut+At vt+At y t + A t  p + A t  

4 ' 1  

as 

At At At 

At At 

'3 

ej + P z  - - (Fpr? - Fpr7-,) - - PzARe:) - - (Fpr,* - VZj P;,)], 

qj + P$j - z  (Fpq57 - Fpq57-J -2- Fp# -$ c7ARt-7) (V;, - U;bj)] , 

Ar St ' 5  

= 0.5 C ~ + C ~ - - - ( P ; - P ~ - ~ ) - - P , ; ] .  At At 

[ j A r  ' I  

The following notation is used: 
Pr = KC, P' = V4c, Fpr = Pr V,, Fpq5 = P+ V,, 

and Vf3 = K(r = j Ar, t ) ,  cj = c(r = j Ar, t ) ,  etc. The following boundary conditions are 
imposed : 

The algorithm was checked for the case c, 6 = 0 (no influence of the particulate on 
the fluid flow). The accuracy attained was found to be O(Ar2,At2).  In the numerical 
simulations we used Ar = 0.02, At = 0.002, rmaz = 10. 
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In the case of the Stuart flow, equations (77)-(79) were discretized in two- 
dimensional Cartesian coordinates (x, y )  in the domain 0 < x < 2n, -K < y < K in 
accordance with the MacCormack marching scheme similar to that above. We used the 
grid 1OOx 100 and advanced the system with the time step At = 0.01. Solving the 
Poisson equation (76) we performed the Fourier transform over the x-coordinate, used 
the Thomas algorithm over the y-coordinate and then transformed the solution back, 
obtaining the value of the stream function for the given vorticity field (Fletcher 1990). 
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